The Maths Curriculum Pathway The Tilstock Way

'Pure mathematics is, in its way, the poetry of logical ideas.' Albert Einstein,

Maths at our school aims to ensure that all our children become fluent in the fundamental of maths, reason mathematically and can solve problems.

Fluency – We know that our children must know their number bonds, times tables and place value securely to provide them with the key knowledge to enable them to work mathematically. We have regular 'maths skills' sessions using *Target Your Maths* to instil this learning into their long term memories. We use online learning platforms such as *NumBots* and *Times-table Rockstars* to allow children regular time to practice and secure the fundamentals of maths.

Reasoning- This is an essential part of the daily maths lesson. Children are encouraged to talk about and discuss how they are going to work something out, to unearth the deeper learning and thinking mathematically. Children are encouraged to answer questions such as 'What do you notice?' How could you begin solving this question' What are the key features?' This is also an opportunity to develop and use mathematical vocabulary. We use *White Rose Maths as a* consistent framework across the school to develop reasoning skills.

Problem Solving – This is a vital strand of our maths curriculum as an opportunity for children to transfer their understanding to new concepts. As well as linking maths to cross-curriculum subjects in real-life contexts, we use Nrich and NCETM materials to expose our children to a range of mathematical problems.

Milestones – March 2021

The attached pathways show the Maths Milestones for each year group. This has been derived from the DfE publication: *Mathematics guidance: key stages 1 and 2 Non-statutory guidance for the national curriculum in England*

The pathways identify the most important conceptual knowledge and understanding that pupils need as they progress from year 1 to year 6. These important concepts are referred to as ready-to-progress criteria and provide a coherent, linked framework to support pupils' mastery of the primary mathematics curriculum.

The DfE recommends the use of these at the long-term planning stage, (to ensure that the most important elements that underpin the curriculum are covered at the right time, and to ensure that there is continuity and consistency for pupils as they progress from one year group to the next), and at the medium-term planning stage, (to inform decisions on how much teaching time to set aside for the different parts of the curriculum) therefore teaching time can be weighted towards the ready-to-progress criteria.

We feel that in the current circumstances we need to ensure that al children are secure in the most important conceptual knowledge and understanding to enable them to progress into the next year group.

In light blue you will find descriptors for what children should know before they learn the age related expectations (ready to progress criteria) as defined in black. They contain abbreviated

Ready-to-progress criteria strands	Code
Number and place value	NPV
Number facts	NF
Addition and subtraction	AS
Multiplication and division	MD
Fractions	F
Geometry	G

Year 1 Maths Milestones

Number

Addition/Subtraction

Shape, space & measure

Select, rotate and manipulate shapes for a particular purpose, for example: rotating a cylinder so it can be used to build a tower I rotating a puzzle piece to fit in its place **1G–2** Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations.

<u>1G-1</u> Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another. Categorise shapes. Identify similar shapes.

See, explore and discuss models of common 2D and 3D shapes with varied dimensions and presented in different orientations (for example, triangles not always presented on their base).

Describe properties of shape.

Represent composition and decomposition of numbers using equations.

odd even

1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.

Add and subtract

within 10.

<u>**1AS-2**</u> Read, write and interpret equations containing addition (+), subtraction (-) and equals (=) symbols, and relate additive expressions and equations to real-life contexts.

Know the number bonds of 10

<u>1NF-2</u> Count forwards and backwards in multiples of 2, 5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.

entifv odd an

1NF-1 Develop fluency in

addition and subtraction

facts within 10.

Recall the 2, 5 and

I subitise for up to to 5 items. I automatically show a given number using fingers.

I begin to experience partitioning and combining numbers within 10.

Figure 17: 8 represented as 3 fingers and 5 fingers I distribute items fairly, for example, put 3 marbles in each bag, recognising when items are distributed unfairly.

	Carry	out repeated addition	Unitise	e in tens
Add and subtract across 10.	<u>1NPV–2</u> Reason the location of n 20 within the line system, includin comparing using	n about numbers to ear number ng g < > and =	<u>1NPV–1</u> Cour forwards and starting with a	nt within 100, backwards, any number.
the cardinal value of number words, for example	Co	mpare and order numbers.	Count thro s	ugh the number ystem.
that 'four' relates to 4 objects. 37 3	8 9 11 12 38 40 42 43 52 60 58 5	I play games t moving along a track, and under larger numbers along the	hat involve a numbered erstand that s are further e track	I can count forward to and beyond 20, pausing at each multiple of 10.

Year 2 Maths Milestones

Solve contextual subtraction problems for all three

subtraction structures.

Year 3 Maths Milestones

I can calculate the compliments to 100

	100								
	50						50		
	100								
	25		25 25 25						
	100								
2	20	20 20 20 20					0		
	100								
10	10	10	10	10	10	10	10	10	10

3NF-1 Secure fluency in addition and subtraction facts that bridge 10. through continued practice.

I can calculate products within the 2, 5 and 10 multiplication tables.

×	1	2	3	4	5	6	7	8
1	igodol	ightarrow	igodol	ightarrow	igodol	ightarrow	ightarrow	ightarrow
2	۰	ightarrow			ightarrow		ightarrow	۲
3	ullet	ightarrow	ullet		ightarrow		\circ	۰
4	ightarrow	ightarrow	igodol		igodol		\bigcirc	
5	٠		٠		٠		٠	٠

3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.

I know all the addition and subtraction facts that bridge 10

I can recall the multiplication facts and division facts in the 10, 5, 2, 4, 8 tables

3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with 2, 4, 5 and 10 equal parts.

3NPV-3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10.

3NPV-2 Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning.

3NPV-1 Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10; apply this to identify and work out how many 10s there are in other three-digit multiples of 10.

I can divide 100 into 2, 4, 5 and 10 equal parts

I know that 10 tens are equivalent to 1 hundred

I can count in multiples of 2, 5 and 10.

> I can add and subtract across 10

I reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10.

I recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and nonstandard partitioning.

I know that 10 ones are equivalent to 1 ten. I know how many tens there are in multiples of 10 up to 100.

Year 4 Maths Milestones

Number Nu	and place mber facts	value S	Add Subti	ition/ raction	Shape	, space & I	measure	
<u>4G–1</u> Draw polygons, specified by coordinate the first quadrant, and translate within the first quadrant.	l can mea centim I can add adc s in I car multiplic fa	sure lines in etres and etres. more than 2 lends. n recall cation table acts.	<u>4G–2</u> Ider polygons, equilatera squares, a the side-le and the ar Find the p regular an polygons.	ntify regular including I triangles and as those in which engths are equal ngles are equal. erimeter of ad irregular			cm 4G syn pre orie sha syn with line	<u>-3</u> Identify line nmetry in 2D shapes sented in different entations. Reflect apes in a line of nmetry and complete a nmetric figure or pattern h respect to a specified e of symmetry.
	lden	tify regular	oolygons	Find pe	erimeter			L con roocon
	I can dra polygons joining marked po	by <u>4F–3</u> Ad imprope fractions denomin bridging	ld and subtrac r and mixed with the sam ator, includin whole numbe	I can add a subtract f with the s g denomina ers, within 1 v	and ractions ame ator, vhole,	4F-1 Reason location of mix in the linear ne system. 4F-2 Convert numbers to im fractions and v	about the ked numbers umber mixed proper vice versa.	about the location of fractions less than 1 in the linear number system.
					Re	epresent com ecompositior using equ	position a n of numbe lations.	nd I can identify unit and
l can multiply two-digit numbers by 10, and divide	<u>4MD–1</u> Multi whole number 100 (keeping number quot	ply and divide ers by 10 and to whole ients); his as	l understa relationsh multiplica l can write	stand the inverse hship between ication and division. rite and use		<u>4MD–2</u> Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.		non-unit fractions
three-digit multiples of 10	equivalent to number 10 o the size.	making a r 100 times	multiplica the factor order.	ition table facts s presented in e	with ither app pro	D-3 Understand by the distribution perty of multiplice	d and ve cation.	
by 10				Memo	rise multi	plication ta	bles.	
		<u>4NF-3</u> Apply place knowledge to know additive and multi- number facts (sca by 100), for exam 8 + 6 = 14 and 1 so 800 + 600 = 1.400	e-value wn plicative lling facts ple: 4 – 6 = 8	I can apply pla value knowled to known addi and multiplicat	ace- dge pro tive div div tive rer	IF-2 Solve divisoblems, with two vidends and one visors, that invo mainders, for ex	sion o-digit e-digit Ive kample:	l use known division facts to solve division problems.

Solve contextual subtraction problems for all three

1,0	000
500	500

1,000 250 250 250 250

1,000 4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with 2, 4, 5 and 10 equal parts.

1.400 - 600 = 800

I can recall multiplication and division facts in the 5 and 10, and 2, 4 and 8 multiplication tables

4NF-1 Recall multiplication and division facts up to 12 × 12, and recognise products in multiplication tables as multiples of the corresponding number.

 $74 \div 9 = 8 r 2$

additive calculation

I can divide 100 into 2, 4, 5 and 10 equal parts

4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100, and rounding to the nearest of each.

4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning.

Add and subtract within 100

4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100.

I can calculate small

differences

Add and subtract using mental and formal written methods.

Compare and order numbers

I can reason about the location of any threedigit number in the linear number system

I recognise the place value of each digit in three-digit numbers

I Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of

subtraction structures.

number facts

Year 5 Maths Milestones

Number and Numb	d place value er facts	l Su	Addition/ Ibtraction		Shape, space	& measure
<u>5F-3</u> Recall decimal fraction equivalents for $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$ and $\frac{1}{10}$, and for multiples of these proper fractions.	I recognise right angles as a property of shape or a description of a turn, and identify right angles in 2D shapes presented in different orientations.	l can compose polygons from smaller shapes.	l identify whether the interior angles of a polygon are equal	4cm	4cm × 5cm = 20cm ² 5cm × 4cm = 20cm ²	5G-1 Compare angles, estimate and measure angles in degrees (°) and draw angles of a given size.
divide powers of 10 into 2, 4,	Identify right angle	es	l can calcula	ite the area	of a rectangle	rectangles (including squares) using standard units.
5 and 10 equal parts.	5F–2 Find equivalent fractions and understat they have the same value and the same position in the linear number system.	I rease about locatio fraction the lin numb syster	on the n of <u>5F–1</u> Fin ns in fractions ear oer m.	nd non-unit of quantities.	I can find unit fractions of quantities using known division facts	<u>5MD-4</u> Divide a number with up to 4 digits by a one-digit number using a formal written method, a interpret remainders appropriately for the context.
	I can find equivale	nt fraction	S	l can digi	divide a number w ts by a one-digit n	it up to 4 umber
I recognise multiples of 100 and 1,000. I apply place-value knowledge known additive and multiplicative number I multiply and divide w numbers by 10 and 100	 f 10, <u>5MD-2</u> Find factors a multiples of positive on numbers, including common factors and common multiples, a express a given num as a product of 2 or 3 factors. 	and whole by any using ber 3	3 Multiply any w er with up to 4 di y one-digit numb a formal written od.	hole igits per equ I sol with and invo	n manipulate tiplication and div ations. ve division proble n two-digit dividen one-digit divisors, olve remainders	ision ms, ids , that
	Multiply any 4 digit nu	mber	Memori	ise multin	lication tables	
5 n u e n tt	MD-1 Multiply and divide umbers by 10 and 100; understand this as equivalent to making a umber 10 or 100 times he size, or 1 tenth or 1 undredth times the size.	er can multiply au hole numbers eeping to who uotients); I uno equivalent to umber by 10 o	nd divide by 10 and 100 ble number derstand this scaling a r 100.	<u>5NF-2</u> Apply p knowledge to k additive and m number facts (s by 1 tenth or 1 for example: 8 + 6 = 14 0.8 + 0.6 = 1.4 0.08 + 0.06 = 0	lace-value mown ultiplicative scaling facts hundredth),	l can apply place-value knowledge t known additive and multiplication number fact

Multiply and Divide numbers by 10 and 100

1						
0.25	0.25	0.25	0.25			

5NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of 1 with 2. 4, 5 and 10 equal parts.

I can

divide

1,000

into 2, 4,

5 and 10

equal

parts

I can divide 100 and 1,000 into 2, 4, 5 and 10 equal parts. I can find unit fractions of quantities

facts

5NPV-5 Convert between units of measure, including using common decimals using known division and fractions.

Know that 100 hundredths are

equivalent to 1 one

I can recall multiplication and division facts up to 12 x 12. I solve division problems, with twodigit dividends and onedigit divisors, that involve remainders

5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.

Divide 1 into 2, 4, 5 and 10 equal parts.

5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.

Recognise the place value of each digit in numbers with up to 2 decimal places

5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and nonstandard partitioning.

5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1.

Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01.

Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01.

Know that 10 tenths are equivalent to 1 one

I can reason about the location of any four-digit number in the linear number system

I recognise the place value of each digit in four-digit numbers, and I can compose and decompose four-digit numbers using standard and nonstandard partitioning.

I know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100

Year 6 Maths Milestones

6AS/MD-3 Solve problems involving ratio relationships.

Recall multiplication and division facts up to 12 x 12. **Apply place-value** knowledge to known additive and multiplicative number facts.

6AS/MD-1 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.

Solve problems involving ratio.

× 3

60

20

5200,000

6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).

I reason about the location of numbers between 0.01 and 9,999 in the linear number system.	I can round decimal fractions to the nearest whole number or nearest multiple of 0.01	I can divide 1000, 100 and 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines with 2, 4, 5 and 10 equal parts.	I am fluent in key stage additive an multiplicati number fac and calculati	n all 2 nd ve ts on.
l can	Reason abo	ut the location of any n	number up to 10 million	
round whole numbers to the nearest multiple of 1,000, 100	<u>6NPV-4</u> Divide powers of 10, from 1 hundredth to 10 million, into 2, 4, 4 and 10 equal parts, and read scales/number lines with labelled intervals divided into 2, 4, 5 and 10 equal parts	6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.	6NPV <u>-2</u> Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non- standard partitioning.	<u>6NPV-1</u> Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number 10, 100, 1,000, 1 tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10, 100 and 1,000).
or 10, as appropriat e.	Know, unde pov	rstand and use the wer of 10 .	Recognise the place value each digit up to 10 million	of n I understand the relationship
Millions Thousands 100s 10s 1s 100s 1s 100s 10s 1s 10s 1s	Ones I recognis digit in n thousa compos numbers sta	the place value of each numbers with units from nds to hundredths and e and decompose these using standard and non- ndard partitioning.	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	between powers of 10 from 1 hundredth to 1,000 in terms of grouping and exchange